Classification of carotid artery abnormalities in ultrasound images using an artificial neural classifier
نویسندگان
چکیده
This work presents a computer-aided system for the identification of plaques and atherosclerosis of carotid abnormalities and the individuals at risk of stroke. Intima Media Thickness (IMT) of carotid artery is the standard biomarker of subclinical atherosclerosis and plaques. Conventional IMT measurement by expert sonologist is time consuming, associated with subjectivity and the process becomes difficult when the number of patients is very large. This paper proposes a standard protocol to diagnose patients efficiently and the process is made extremely fast. In this paper, the decision making ability of an artificial learning machine is investigated in carotid ultrasound artery image classification. Architecture with multilayer Back Propagation Network (BPN) using Levenberg-Marquardt training with good generalization capabilities and extremely fast learning capacity that overcomes the local minima problem of generalized BPN has been proposed. Carotid images are preprocessed, normalized and segmented to extract eighteen different feature sets and given as input to Artificial Neural Network (ANN). The selected features are found to be the good choice of feature vectors and have the ability to discriminate between normal and abnormal image. The proposed system is robust to any ultrasound image artifact. ANN classifier is evaluated using 361 ultrasound images. The efficiency is measured by validating the outputs of this decision support system with that of medical experts. This system improves the classification rate, reaching the diagnostic yield of 89.43%. The simulation results depicts that ANN achieves good classification accuracies with less implementation complexity when compared with manual operation.
منابع مشابه
Automatic classification of Non-alcoholic fatty liver using texture features from ultrasound images
Background: Accurate and early detection of non-alcoholic fatty liver, which is a major cause of chronic diseases is very important and is vital to prevent the complications associated with this disease. Ultrasound of the liver is the most common and widely performed method of diagnosing fatty liver. However, due to the low quality of ultrasound images, the need for an automatic and intelligent...
متن کاملEffective Feature Selection for Pre-Cancerous Cervix Lesions Using Artificial Neural Networks
Since most common form of cervical cancer starts with pre-cancerous changes, a flawless detection of these changes becomes an important issue to prevent and treat the cervix cancer. There are 2 ways to stop this disease from developing. One way is to find and treat pre-cancers before they become true cancers, and the other is to prevent the pre-cancers in the first place. The presented approach...
متن کاملCarotid artery image segmentation using modified spatial fuzzy c-means and ensemble clustering
Disease diagnosis based on ultrasound imaging is popular because of its non-invasive nature. However, ultrasound imaging system produces low quality images due to the presence of spackle noise and wave interferences. This shortcoming requires a considerable effort from experts to diagnose a disease from the carotid artery ultrasound images. Image segmentation is one of the techniques, which can...
متن کاملAutomatic measurement of instantaneous changes in the walls of carotid artery with sequential ultrasound images
Introduction: This study presents a computerized analyzing method for detection of instantaneous changes of far and near walls of the common carotid artery in sequential ultrasound images by applying the maximum gradient algorithm. Maximum gradient was modified and some characteristics were added from the dynamic programming algorithm for our applications. Methods: The algorithm was evaluat...
متن کاملEvaluating the effect of stenosis increase and pulsatile blood pressure on effective stress distribution in viscoelastic finite element model based on carotid artery ultrasound images
The aim of this study is to evaluate the changes of effective stress distribution in plaque by progressing to the stenosis throat and to assess the pulsatile pulse pressure effect on effective stress of a viscoelastic finite-element model of carotid arteries having less and more than 50% stenosis. In-vivo geometries of the arteries were reconstructed using consecutive transverse ultrasound imag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Int. Arab J. Inf. Technol.
دوره 13 شماره
صفحات -
تاریخ انتشار 2016